Automatic Classification of Power Quality disturbances Using S-transform and MLP neural network
نویسندگان
چکیده
The paper presents an S-Transform based multilayer perceptron neural network (MLP) classifier for the identification of power quality (PQ) disturbances.The proposed method is used to extract the three input features (Standard deviation, peak value and variances) from the distorted voltage waveforms simulated using parametric equations. The features extracted through S-transform are trained by a MLP neural network for the automatic classification of PQ disturbances. MLP neural classifier has been implemented and tested for nine types of power quality disturbances. The results clearly show that the proposed method has the ability to identify and characterize PQ disturbances. The performance of the proposed technique is compared with the kalman based MLP neural network.
منابع مشابه
Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملطراحی یک سیستم هوشمند مبتنی بر شبکه های عصبی و ویولت برای تشخیص آریتمی های قلبی
In this paper, Automatic electrocardiogram (ECG) arrhythmias classification is essential to timely diagnosis of dangerous electromechanical behaviors and conditions of the heart. In this paper, a new method for ECG arrhythmias classification using wavelet transform (WT) and neural networks (NN) is proposed. Here, we have used a discrete wavelet transform (DWT) for processing ECG recordings, and...
متن کاملClassification of Power Quality Disturbances Using Wavelet Transform and S-transform Based Artificial Neural Network
This paper presents features that characterize power quality disturbances from recorded voltage and current signals using wavelet transformation and S-transform analysis. The disturbance of interest includes sag, swell, transient and harmonics. A 25kv distribution network has been simulated using matlab software. The feature extraction has been done using wavelet transformation and S-transform,...
متن کاملSupport Vector Regression Based S-transform for Prediction of Single and Multiple Power Quality Disturbances
This paper presents a novel approach using Support Vector Regression (SVR) based S-transform to predict the classes of single and multiple power quality disturbances in a three-phase industrial power system. Most of the power quality disturbances recorded in an industrial power system are non-stationary and comprise of multiple power quality disturbances that coexist together for only a short d...
متن کاملA novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کامل